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Two-Dimensional Problems Using

CST Elements
(Initial notes are designed by Dr. Nazri Kamsah)
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The thin plate can be analyzed as a plane stress problem, where the normal and 

shear stresses perpendicular to the x-y plane are assumed to be zero, i.e.

The nonzero stress components are

8-1 Introduction

A thin plate of thickness t, with a hole in the 

middle, is subjected to a uniform traction 

load, T as shown. This 3-D plate can be 

analyzed as a two-dimensional problem.

2-D problems generally fall into two 

categories: plane stress and plane strain.

a) Plane Stress
A plane stress problem

0;  0;  0z xz yz    

0;  0;  0x y xy    
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A dam subjected to uniform pressure 

and a pipe under a uniform internal 

pressure can be analyzed in two-

dimension as plain strain problems.

The strain components perpendicular to 

the x-y plane are assumed to be zero, 

i.e.

Thus, the nonzero strain components 

are x ,  y , and xy.

b) Plane Strain

x

z

y

A dam subjected to a uniform

pressure

x

z

y

Pipe under a uniform

internal pressure

0; 0;  0z xz yz    

0;  0;  0x y xy    
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8-2 General Loading Condition

A two-dimensional body can be subjected to three types of forces:

a) Concentrated forces, Px & Py at a point, i;

b) Body forces, fb,x & fb,y acting at its centroid;

c) Traction force, T (i.e. force per unit length), acting along a perimeter.
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The 2-dimensional body experiences a 

deformation due to the applied loads.

At any point in the body, there are two 

components of displacement, i.e.

u = displacement in x-direction;

v = displacement in y-direction.
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Stress-Strain Relation

Recall, at any point in the body, there are three components of strains, 

i.e.

 
x

y

xy

u

x

v

y

u v

y x



 



 
 

  
  

    
   

    
 

  

The corresponding stress components at that point are 

 
x

y

xy



 



 
 

  
 
 
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    D 

The stresses and strains are related through,

where [D] is called the material matrix, given by

  2

1
2

1 0

1 0
1

0 0 v

v
E

D v
v



 
 

  
  

 

for plane stress problems and

 
  

1
2

1 0

1 0
1 1 2

0 0

v v
E

D v v
v v

v

 
 

   
    

for plane strain problems.
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8-3 Finite Element Modeling

The two-dimensional body is 

transformed into finite element model 

by subdividing it using triangular 

elements.

Note: 

1. Unfilled region exists for curved 

boundaries, affecting accuracy of the 

solution. The accuracy can be 

improved by using smaller elements.

2. There are two displacement  

components at a node. Thus, at a 

node j, the displacements are:

2 1

2

    in -direction

      in -direction
j

j

Q x

Q y




SME 3033 FINITE ELEMENT METHOD

Finite element model of a bracket.
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8-4 Constant-Strain Triangle (CST)

Consider a single triangular element as shown.

The local node numbers are assigned in the 

counterclockwise order.

The local nodal displacement vector for a 

single element is given by,

   1 2 6, , ...,
T

q q q q

Within the element, displacement at any 

point of coordinate (x, y), is represented 

by two components, i.e. u in the x-

direction and v in the y-direction.

Note: We need to express u and v in terms of the nodal displacement components, 

i.e. q1, q2, …, q6. 
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Displacement components u and v at any point (x, y) within the element 

are related to the nodal displacement components through 

634221

533211

qNqNqNv

qNqNqNu





where N1, N2 and N3 are the linear shape functions, given by

1 2 3;      ;      1N N N       

in which  and  are the natural coordinates for the triangular element.

Substituting Eq.(ii) into Eq.(i) and simplifying, we obtain alternative expressions for 

the displacement functions, i.e.

   

    66462

55351

qqqqqv

qqqqqu









8-5  Displacement Functions

(i)

(ii)

(iii)
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Eq.(i) can be written in a matrix form as,

    u N q

  1 2 3

1 2 3

0 0 0

0 0 0

N N N
N

N N N

 
  
 

   1 2 6, , ...,
T

q q q q

For the triangular element, the coordinates (x, y) of any point within the element can 

be expressed in terms of the nodal coordinates, using the same shape functions N1, 

N2 and N3. We have,

where

1 1 2 2 3 3

1 1 2 2 3 3

x N x N x N x

y N y N y N y

  

  

This is called an isoparametric representation.
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   

   

1 3 2 3 3

1 3 2 3 3

13 23 3

13 23 3

x x x x x x

y y y y y y

x x x x

y y y y

 

 

 

 

    

    

  

  

Substituting for Ni using eq. (ii), we get 

Using the notation, xij = xi – xj and yij = yi – yj, the above equations can then 

be written as

Note: The above equations relate the x- and y-coordinates to the - and -

coordinates (the natural coordinates). We observe that,

3223

3113

yyy

xxx




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8-6 The Shape Functions

The shape functions for the 

triangular element are illustrated 

in the figures. Recall, we have

1 2

3

;    ;

1

N N

N

 

 

 

  

Also, N1 + N2 + N3 = 1
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1
1

2
2

3
3

;    

;

A
N

A

A
N

A

A
N

A







The shape functions can be physically represented by area coordinates,

where A is the area of the triangular element, i.e.

A = A1 + A2 + A3

Area Coordinate Representation
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Exercise 8-1

Consider a triangular element shown below. Evaluate the shape functions 

N1, N2, and N3 at an interior point P.

The triangular element for solution.

x

y
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Simplifying the equations yields,

2.25.35

15.035.2









Solving the equations simultaneously, we obtain  = 0.3 and h = 0.2. Thus, the 

shape functions for the triangular element are, 

5.02.03.0 321  NNN

Solution

   

   

1 1 2 2 3 3 1 2 3

1 1 2 2 3 3 1 2 3

1 3 2 3 3

1 3 2 3 3

1.5 7 4 3.85

2 3.5 7 4.8

2.5 3 4 3.85

5 3.5 7 4.8

x N x N x N x N N N

y N y N y N y N N N

x x x x x x

y y y y y y

   

   

      

      

         

         

Using the notation, xij = xi – xj and yij = yi – yj, the above become
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8-7 Area of the Triangular Element

The area, A of any arbitrarily oriented straight-sided triangular elements 

can be determined using a formula 

 
1

det
2

A J

where [J] is a square matrix called the Jacobian, given by

  13 13

23 23

x y
J

x y

 
  
 

The determinant of the Jacobian [J] is

  13 23 23 13det J x y x y 

Note: “l l” represents the “magnitude of”. Most computer software use counter-

clockwise order of local node numbering, and use det[J] for computing the area 

of the triangular element. 
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8-8 Strain-Displacement Matrix

The strains within the triangular element are related to the components of 

the nodal displacement  by a relation

    B q 

where [B] is a (3 x 6) rectangular matrix called the strain-displacement matrix, 

given by

 
 

23 31 12

32 13 21

32 23 13 31 21 12

0 0 0
1

0 0 0
det

y y y

B x x x
J

x y x y x y

 
 


 
  

Note: For the given magnitude of {q}, the strains within the element depend only on 

[B] matrix, which in turns depends on the nodal coordinates, which are constant. 

Hence the strains are the same everywhere within the element, thus the name 

constant-strain triangle (CST).
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The triangular element for solution.

x

y

Exercise 8-2

Consider a triangular element in Exercise 8-1. a) Write the Jacobian

matrix; b) Find the determinant of the Jacobian matrix; c ) Compute the 

area of the triangular element; d) Establish the strain-displacement 

matrix for the element. 
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7-9 Potential Energy Approach

The total potential energy of a 2-D body, 

discretized using triangular elements, is 

given by

    

       

   

1

2

            

                       

T

e
e

T T

e L
e

T

i i
i

D tdA

u f tdA u T tdL

u P

  

 



 

 



The first term represents the sum of internal strain 

energy of all elements, Ue. For a single element, the 

internal strain energy is

    
1

2

T

e
e

U D t dA  



SME 3033 FINITE ELEMENT METHOD

We will derive the stiffness matrix of a triangular element using the 

potential energy approach. Recall, the internal strain energy of an 

element, Ue is given by

    
1

2

T

e

e

U D t dA  

The strains {} are related to nodal displacements {q} by, 

    qB

       
1

2

T T

e

e

U q B D B q t dA 

Substituting Eq.(ii) into Eq.(i), we get

8-10 Element Stiffness Matrix

(i)

(ii)

(iii)

Taking all constants in Eq.(iii) out of the integral we obtain,

         
1

2

T T

e
e

U q B D B t dA q  (iv)
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Note that,
e

e

AdA  , i.e. the area of the triangular element.

       qBDBAtqU
T

ee

T

e
2

1


From eq.(vi) we identify the stiffness matrix [k]e of the triangular (CST) element as,

       
e T

e ek t A B D B 

Substituting this into eq.(iv) and further simplifying, we get,

     
1

2

T e

eU q k q

The internal strain energy of the element can now be written as

(v)

(vi)

Note: Since there are 6 DOFs for a given element, [k]e will be a (6 x 6) rectangular 

symmetric matrix.
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Exercise 8-3

Determine the stiffness matrix for the straight-sided triangular element of 

thickness t = 1 mm, as shown. Use E = 70 GPa, n = 0.3 and assume a 

plane stress condition.

Solution

       
e T

e ek t A B D B 

where,

  13 23 23 13

2

1 1
det

2 2

1
    23.75

2

11.875  mm

e

e

A J x y x y

A

  





Element stiffness matrix is given by

1 mmet 

(Dimension is in mm)

(i)
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The strain-displacement matrix, [B] is given by

 
 

 

23 31 12

32 13 21

32 23 13 31 21 12

0 0 0
1

0 0 0
det

3.5 7 0 7 2 0 2 3.5 0
1

0 4 7 0 1.5 4 0 7 1.5
23.75

4 7 3.5 7 1.5 4 7 2 7 1.5 2 3.5

3.5 0 5 0 1.5 0
1

0 3 0 2.5 0 5.5
23.75

3 3.5 2.5 5 5.5 1.5

y y y

B x x x
J

x y x y x y

B

 
 


 
  

   
 

   
 
       

  
 

  
 
      
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For a plane stress condition, the material’s matrix [D] is given by

 
   

3

2 2

1 1
2 2

1 0 1 0.3 0
70 10

1 0 0.3 1 0
1 1 0.3

0 0 1 0 0 1 0.3

E
D

n

n
n

n

   
   

     
       

The transpose of [B] matrix is,

 

3.5 0 3

0 3 3.5

5 0 2.51

0 2.5 523.75

1.5 0 5.5

0 5.5 1.5

T
B

  
 

 
 
 

  
 

 
 

 
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Substituting all the terms into eq.(i) we have,

 
 






























































35.000

013.0

03.01

3.01

1070

5.15.50

5.505.1

55.20

5.205

5.330

305.3

75.23

1
875.111

2

3
e

k

























5.15.555.25.33

5.505.2030

05.10505.3

75.23

1
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Multiplying and simplifying, we obtain

  4

2.494 1.105 2.409 0.425 0.085 0.68

2.152 0.233 0.223 0.873 2.374

4.403 1.316 1.994 1.549
10

2.429 1.741 2.652

2.079 0.868

5.026

e
k

    
 

  
 
  

   
 

 
 
 

q1 q2 q3 q4 q5 q6

symmetry

Note: Connectivity with the local DOFs is shown.
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We will derive the force vector for a single element, which is contributed by 

a) body force, f and b) traction force, T.

We need to convert both f and T into the equivalent nodal forces.

Note: The concentrated forces can be included directly into the global load 

vector, appropriate DOF direction.

a) Body Force

Suppose body force components, fx and fy, act at 

the centroid of a triangular element.

The potential energy due to these forces is 

given by,

8-11 Element Force Vector

     
T

e x y
e e

u f t dA t uf vf dA    (i)
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634221

533211

qNqNqNv

qNqNqNu



Recall,

Also,
1

3
i e

e
N dA A

Substituting the above into eq.(i), we get

       
T T e

e
u f t dA q f 

where {f}e is the element body force vector, 

given by

  , , , , ,
3

Te e e
x y x y x y

t A
f f f f f f f   

Note: Physical representation of force vector {f}e is shown.
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8-12 Concentrated Force

The concentrated force term can be easily considered by having a node at 

the point of application of the force.

If concentrated load components Px and Py are applied at a point i, then

    2 1 2

T

i x i yi i
u P Q P Q P 

Thus, Px and Py, i.e. the x and y components of {P}i get added to the (2i - 1)th 

component and (2i)th components of the global force vector, {F}.

Note: The contribution of the body, traction and concentrated forces to the global 

force vector, {F} is represented by,

        
e e

e
F f T P  
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a) Strains

The strains in a triangular element are,

 

 

    

du
x dx

e dv
y dy

du dvxy
dy dx

e
B q



 





 
   
   

    
   
    



Note: We observed that {}e depends on the [B] matrix, which in turn depends 

only on nodal coordinates (xi, yi), which are constant. Therefore, for a given 

nodal displacements {q}, the strains {}e within the element are constant.

Hence the triangular element is called a constant-strain triangle.

8-13 Strains and Stress Calculations



SME 3033 FINITE ELEMENT METHOD

b) Stresses

The stresses in a triangular element can be determined using the 

stress-strain relation,

        
x

e e e

y

xy

D D B q



  



 
 

   
 
 

Note:

1. Since the strains {}e are constant within the element, the stresses are also

the same at any point in the element.

2. Stresses for plane stress problem differ from those for plane strain problem

by the material’s matrix [D].

3. For interpolation purposes, the calculated stresses may be used as the

values at the centroid of the element.

4. Principal stresses and their directions are calculated using the Mohr circle.
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Consider a thin plate having thickness t = 0.5 in. being modeled using two 

CST elements, as shown. Assuming plane stress condition, (a) determine 

the displacements of nodes 1 and 2, and (b) estimate the stresses in both 

elements. 

Example 8-1
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Local Nodes

Element No 1 2 3

1 1 2 4

2 3 4 2

Solution

Element connectivity

For plane stress problem, the 

materials matrix is given by

 
 

 

2

1
2

6

1 0

1 0  
1

0 0 1

1 0.25 0

32 10 0.25 1 0

0 0 0.375

E
D

D

n

n
n

n

 
 

  
  

 
 

 
 
  
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    2

1

1 1
det 6 3 in

2 2
A J  

 
 

23 31 12

32 13 21

32 23 13 31 21 12

0 0 0 2 0 3 0 2 0
1 1

0 0 0 0 3 0 3 0 0
det 6

3 2 3 0 0 2

y y y

B x x x
J

x y x y x y

    
   

  
   
       

Element 1

The strain-displacement matrix,

Area of element,

Multiplying matrices [D][B] we get,

  
(1) 7

1.067 0.4 0 0.4 1.067 0

10 0.267 1.6 0 1.6 0.267 0

0.6 0.4 0.6 0 0 0.4

D B

  
 

   
 
   



SME 3033 FINITE ELEMENT METHOD

 
(1) 7

0.983 0.5 0.45 0.2 0.533 0.3

1.4 0.3 1.2 0.2 0.2

0.45 0 0 0.3
10

1.2 0.2 0

symmetric 0.533 0

0.2

k

   
 

 
 
 

  
 

 
 
 

The stiffness matrix is given by,

      
(1)

1 1 1 1

T
k t A B D B

Substitute all parameters and multiplying the matrices, yields

Q1 Q2 Q3 Q4 Q7 Q8

Note: Connectivity with global DOFs are shown.



SME 3033 FINITE ELEMENT METHOD

    2

2

1 1
det 6 3 in

2 2
A J  

Element 2

The strain-displacement matrix is

Area of element,

Multiplying matrices [D][B] we get,

  
(2) 7

1.067 0.4 0 0.4 1.067 0

10 0.267 1.6 0 1.6 0.267 0

0.6 0.4 0.6 0 0 0.4

D B

  
 

   
 
   

 
 

23 31 12

32 13 21

32 23 13 31 21 12

0 0 0 2 0 0 0 2 0
1 1

0 0 0 0 3 0 3 0 0
det 6

3 2 3 0 0 2

y y y

B x x x
J

x y x y x y

   
   

  
   
       



SME 3033 FINITE ELEMENT METHOD

 
(2) 7

0.983 0.5 0.45 0.2 0.533 0.3

1.4 0.3 1.2 0.2 0.2

0.45 0 0 0.3
10

1.2 0.2 0

symmetric 0.533 0

0.2

k

   
 

 
 
 

  
 

 
 
 

The stiffness matrix is given by,

      
(2)

2 2 2 2

T
k t A B D B

Substituting all parameters and multiplying the matrices yield

Q5 Q6 Q7 Q8 Q3 Q4

Note: Connectivity with global DOFs are shown.



SME 3033 FINITE ELEMENT METHOD

Write the global system of linear equations, [K]{Q} = {F}, and then apply 

the boundary conditions: Q2, Q5, Q6, Q7, and Q8 = 0.

The reduced system of linear equations are,

1

7

3

4

0.983 0.45 0.2 0

10 0.45 0.983 0 0

0.2 0 1.4 1000

Q

Q

Q

     
    

      
          

Solving the reduced SLEs simultaneously yields,

1

5

3

4

1.913

0.875 10    in.

7.436

Q

Q

Q



   
   

    
      



SME 3033 FINITE ELEMENT METHOD

Stresses in element 1

For element 1, the element nodal displacement vector is

   
(1) 510 1.913, 0, 0.875, 7.436, 0 0

T
q  

The element stresses, {}(1) are calculated from [D][B](1){q} as

   
(1)

93.3, 1138.7, 62.3   psi
T

    

Stresses in element 2

For element 2, the element nodal displacement vector is

   
(2) 510 0, 0, 0 0, 0.875, 7.436

T
q  

The element stresses, {}(2) are calculated from [D][B](2){q} as

   
(2)

93.4, 23.4, 297.4   psi
T

  


